Abstract

In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 4-bromo-1-(ethoxycarbonyl)piperidine-4-carboxylic acid (BEPA). BEPA has been characterized by FT-IR, FT-Raman, 1H NMR, 13C NMR and UV spectroscopy. The FT-IR and FT-Raman spectra of BEPA were recorded in the solid phase. The optimized geometry was calculated by B3LYP and M06-2X methods using 6-311G(d,p) basis set. The FT-IR and FT-Raman spectra of BEPA were calculated at the same level and were interpreted in terms of Potential Energy Distribution (PED) analysis. The scaled theoretical wavenumber showed very good agreement with the experimental values. The 1H and l3C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge-Independent Atomic Orbital (GIAO) method. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using Natural Bond Orbital (NBO) analysis.Density plots over the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) energy surface directly identifies the donor and acceptor atoms in the molecule. It also provides information about the charge transfer within the molecule. To obtain chemical reactivity of the molecule, the molecular electrostatic potential (MEP) surface map is plotted over the optimized geometry of the molecule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call