Abstract

The spectroscopic and photochemical properties of the synthetic carotenoid, locked-15,15′-cis-spheroidene, were studied by absorption, fluorescence, circular dichroism, fast transient absorption and electron spin resonance spectroscopies in solution and after incorporation into the reaction center of Rhodobacter (Rb.) sphaeroides R-26.1. HPLC purification of the synthetic molecule reveals the presence of several di-cis geometric isomers in addition to the mono-cis isomer of locked-15,15′-cis-spheroidene. In solution, the absorption spectrum of the purified mono-cis sample was red-shifted and showed a large cis-peak at 351 nm compared to unlocked all-trans spheroidene. Molecular modeling and semi-empirical calculations reveal how geometric isomerization and structural factors affect the room temperature spectra. The spectroscopic studies of the purified locked-15,15′-mono-cis molecule in solution reveal a more stable manifold of excited states compared to the unlocked spheroidene. Reaction centers of Rb. sphaeroides R-26.1 in which the locked-15,15′-cis-spheroidene was incorporated show no difference in either the spectroscopic properties or photochemistry compared to reaction centers in which unlocked spheroidene was incorporated or to Rb. sphaeroides wild type strain 2.4.1 reaction centers which naturally contain spheroidene. The data suggest that the natural selection of a cis-isomer of spheroidene for incorporation into native reaction centers of Rb. sphaeroides wild type strain 2.4.1 is more determined by the structure or assembly of the reaction center protein than by any special quality of the cis-isomer of the carotenoid that would affect its ability to participate in triplet energy transfer or carry out photoprotection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.