Abstract
A spectrophotometric procedure is described for the determination of antimony in natural waters (including sea water and effluents), algae and silicates. After a preliminary oxidative digestion for waters, or acid attack for algae and silicates, the element is quantitatively coprecipitated at pH 5.0 with hydrous zirconium oxide. The precipitate is dissolved in acid, and, after reduction with titanium(III) chloride, antimony is oxidized to antimony(V) with sodium nitrite. The ion pair of the SbCl 6 - ion with crystal violet is extracted with benzene and its absorbance is measured at 610 nm (molar absorptivity 74,000 l mol -1 cm -1). Extraction with toluene causes some loss of sensitivity. The detection limit is 0.005 μg l -1; relative standard deviations are 0.5% and 1.1% for spiked distilled water (0.5 μg l -1) and sea water (0.26 μg l -1), respectively. A wide range of anions and cations cause no interference at levels many times those in natural waters. The technique can be adapted for application to marine algae and silicates; relative standard deviations are 1.8% and 2% for samples of Pelvetia canaliculata (0.19 μg Sb g -1) and a Pacific Ocean red clay (1.08 μg Sb g -1), respectively. Results for the U.S. Geological Survey Standard rocks GSP1 (2.7 ppm) and DTS1 (0.53 ppm) are in good agreement with those of earlier workers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.