Abstract
In this paper we study the numerical solutions to parabolic Volterra integro-differential equations in one-dimensional bounded and unbounded spatial domains. In a bounded domain, the given parabolic Volterra integro-differential equation is converted to two equivalent equations. Then, a Legendre-collocation method is used to solve them and finally a linear algebraic system is obtained. For an unbounded case, we use the algebraic mapping to transfer the problem on a bounded domain and then apply the same presented approach for the bounded domain. In both cases, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.