Abstract
Let G be a compact connected Lie group which is equipped with a bi-invariant Riemannian metric. Let m ( x , y ) = x y be the multiplication operator. We show the associated fibration m : G × G → G is a Riemannian submersion with totally geodesic fibers and we study the spectral geometry of this submersion. We show that the pull-backs of eigenforms on the base have finite Fourier series on the total space and we give examples where arbitrarily many Fourier coefficients can be non-zero. We give necessary and sufficient conditions for the pull-back of a form on the base to be harmonic on the total space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.