Abstract
Interactions between Very High Energy (VHE) gamma-rays from Active Galactic Nuclei (AGNs) and infrared photons from the Extragalactic Background Light (EBL) can start electromagnetic cascades. If the extragalactic magnetic field near a host galaxy is strong enough (∼1 µG), the cascades would develop isotropically around the AGN. As a result, the electron/positron pairs created along the development of the cascades would create an X-ray halo via synchrotron radiation process. It is believed that the VHE gamma-ray spectra from the AGNs could be approximated by a power-law model which is truncated at high energy end (i.e. maximum energy). In this work we studied the X-ray Spectral Energy Distribution (SED) of the halo generated from the AGN spectra with different power indices and maximum energy levels. The results showed that the SEDs were slightly higher and broader, as they were obtaining higher flux if the power indices were lower. On the other hand, the SEDs were sensitive to the maximum energy levels between 100-300 TeV. More flux could be obtained from the higher maximum energy. However, we found that the SED becomes insensitive to the varied parameters when the maximum energy and the power index are > 500 TeV and < 1.5, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.