Abstract

A spectral element method for the approximate solution of linear elastodynamic equations, set in a weak form, is shown to provide an efficient tool for simulating elastic wave propagation in realistic geological structures in two- and three-dimensional geometries. The computational domain is discretized into quadrangles, or hexahedra, defined with respect to a reference unit domain by an invertible local mapping. Inside each reference element, the numerical integration is based on the tensor-product of a Gauss–Lobatto–Legendre 1-D quadrature and the solution is expanded onto a discrete polynomial basis using Lagrange interpolants. As a result, the mass matrix is always diagonal, which drastically reduces the computational cost and allows an efficient parallel implementation. Absorbing boundary conditions are introduced in variational form to simulate unbounded physical domains. The time discretization is based on an energy-momentum conserving scheme that can be put into a classical explicit-implicit predictor/multicorrector format. Long term energy conservation and stability properties are illustrated as well as the efficiency of the absorbing conditions. The accuracy of the method is shown by comparing the spectral element results to numerical solutions of some classical two-dimensional problems obtained by other methods. The potentiality of the method is then illustrated by studying a simple three-dimensional model. Very accurate modelling of Rayleigh wave propagation and surface diffraction is obtained at a low computational cost. The method is shown to provide an efficient tool to study the diffraction of elastic waves and the large amplification of ground motion caused by three-dimensional surface topographies. Copyright © 1999 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call