Abstract

We derive the spectral curves for q-part double Hurwitz numbers, r-spin simple Hurwitz numbers, and arbitrary combinations of these cases, from the analysis of the unstable (0, 1)-geometry. We quantize this family of spectral curves and obtain the Schrodinger equations for the partition function of the corresponding Hurwitz problems. We thus confirm the conjecture for the existence of quantum curves in these generalized Hurwitz number cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.