Abstract
A study is made of the ultra-short laser pulse irradiation of Ar cluster targets. Experiments have been performed with large cluster sizes and using very high laser contrasts, which have allowed clear and unambiguous observation of exotic inner-shell transitions in near-neutral Ar ions. The interaction of the main laser pulse with the unperturbed target is a necessary requirement for observing these lines. Our measurements are supported by kinetics calculations in which a very detailed atomic model is used. The calculations predict all of the spectral features found experimentally, and support the notion that the X-ray emission arises from many ion stages of the Ar plasma, from near-neutral through He-like ions, and from a range of plasma temperatures and densities. Differences between X-ray argon clusters excited at the laser-cluster and laser-droplet interactions have been analyzed. X-ray spectral methods have been proposed to determine the parameters of the plasma formed at the early stages of its evolution. It has been shown that the spectra of hollow ions are the most informative in the first moments of the heating of a cluster, whereas the diagnostics of the late stages can be performed using the conventional lines of multicharged ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.