Abstract

Magnitude information is essential to create a representation of the external environment and successfully interact with it. Duration and numerosity, for example, can shape our predictions and bias each other (i.e. the greater the number of people queuing, the longer we expect to wait). While these biases suggest the existence of a generalized magnitude system, asymmetric effects (i.e. numerosity affecting duration but not vice versa) challenged this idea. Here, we propose that such asymmetric integration depends on the stimuli used and the neural processing dynamics they entail. Across multiple behavioural experiments employing different stimulus presentation displays (static versus dynamic) and experimental manipulations known to bias numerosity and duration perceptions (i.e. connectedness and multisensory integration), we show that the integration between numerosity and time can be symmetrical if the stimuli entail a similar neural time-course and numerosity unfolds over time. Overall, these findings support the idea of a generalized magnitude system, but also highlight the role of early sensory processing in magnitude representation and integration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call