Abstract

Matrine, a Sophora alkaloid, exhibits antiproliferative and anti-carcinogenic activities through several mechanisms. In a previous study, we found that matrine could effectively inhibit the proliferation of castration-resistant prostate cancer (CRPC). In the present study, the effect of matrine and LY294002 on the expression of the Akt/FoxO3a signaling pathway was examined by western blot analyses and RT-PCR. We discovered that matrine significantly inhibited the proliferation of both prostate cancer cell line PC-3 and prostate epithelial cell line RWPE1, induced apoptosis and induced cell cycle arrest. In addition, LY294002 was found to enhance the effect of matrine. Furthermore, the effects of matrine on the inhibition of proliferation and the induction of cell cycle arrest and cell apoptosis were more effective on PC-3 than on RWPE1 cells. Compared to RWPE1 cells, matrine exerted a more powerful influence on PC-3 cells in increasing the expression of the relevant protein. Our data suggested that FoxO3a-Bim and FoxO3a-P27 may mediate matrine-inhibited proliferation of CRPC cells by activating cell apoptosis and inducing cell cycle arrest. Matrine exhibited high selectivity in killing CRPC cells. Our findings demonstrated that matrine could be used in a potential therapeutic role in the management of CRPC in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call