Abstract

The human-restricted pathogens Neisseria gonorrhoeae, Neisseria meningitidis, Haemophilus influenzae and Moraxella catarrhalis colonize host tissues via carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). One such receptor, CEACAM3, acts in a host-protective manner by orchestrating the capture and engulfment of invasive bacteria by human neutrophils. Herein, we show that bacterial binding to CEACAM3 causes recruitment of the cytoplasmic tyrosine kinase Syk, resulting in the phosphorylation of both CEACAM3 and Syk. This interaction is specific for the immunoreceptor tyrosine-based activation motif (ITAM) in the CEACAM3 cytoplasmic domain. While dispensable for the phagocytic uptake of single bacteria by CEACAM3, Syk is necessary for internalization when cargo size increases or when the density of CEACAM-binding ligand on the cargo surface is below a critical threshold. Moreover, Syk engagement is required for an effective bacterial killing response, including the neutrophil oxidative burst and degranulation functions in response to N. gonorrhoeae. These data reveal CEACAM3 as a specific innate immune receptor that mediates the opsonin-independent clearance of CEACAM-binding bacteria via Syk, a molecular trigger for functional immunoreceptor responses of both the adaptive (TCR, BCR, FcR) and innate (Dectin-1, CEACAM3) immune systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.