Abstract
Previous studies of extracellular matrix hydraulic conductivity have characterized the flow resistance of glycosaminoglycans, proteoglycans and collagen. This work focuses on serum albumin, present in significant quantities in many connective tissues, but not previously considered for its role in determining connective tissue flow resistance. The specific hydraulic conductivity of bovine serum albumin solutions, as a function of concentration, was calculated from sedimentation and ultrafiltration data available in the literature. A rigid particle hydrodynamic model compared favorably with these results. Experimental measurements on an albumin ultrafiltration cell were in agreement with this model (within experimental error); furthermore, the experimental data confirmed the theoretical prediction that there is no (or negligible) pressure drop through the concentration polarization layer. Use of the hydrodynamic model for albumin specific hydraulic conductivity with literature values for the hindrance of albumin when passing through a glycosaminoglycan (GAG) matrix allows an estimate of the relative importance of the albumin on tissue hydraulic conductivity: in non-cartilaginous tissues with moderate GAG concentrations, tissue levels of albumin can generate flow resistance effects comparable to those of the GAGs, although well less than the flow resistance of these tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.