Abstract

In this work, high performance spinel MnCo2O4 electrode was fabricated via a facile sol–gel method and its capacitive behavior was successfully investigated in alkaline electrolyte. MnCo2O4 electrode was characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The pseudo capacitive behavior of spinel MnCo2O4 was widely investigated in 2M KOH aqueous electrolyte using cyclic voltammetry (CV), galvanostatic charge-discharge test, and electrochemical impedance spectroscopy (EIS). As a result, the spinel MnCo2O4 exhibited excellent porous structure and the highest specific capacitance of 405Fg−1 was achieved at a current density of 5mAcm−2. In addition, the spinel MnCo2O4 displayed desirable stability in alkaline electrolyte during long-term cycles with a cycling efficiency of 95.1% over 1,000 cycles. The high specific capacitance and excellent cycling ability of MnCo2O4 show promise for its application in supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.