Abstract

We applied a step-down factor analysis (SDFA) and multi-site generalised dissimilarity modelling (MS-GDM) to local flea communities harboured by small mammals (i.e., collected at small sampling sites over a short time period) in two South American regions (Patagonia and the Northwestern Argentina) with the aim of understanding whether these communities were assembled via niche-based or dispersal-based processes. The SDFA allows us to determine whether clusters of flea assemblages across different types of climates, vegetation and soils can be distinguished (suggesting niche-based assembly). MS-GDM allows us to determine whether a substantial proportion of the variation in flea species turnover is explained by specific climate-associated, vegetation-associated and soil-associated variables (indicating niche-based assembly) or host turnover (indicating dispersal-based assembly). Mapping of assemblages on climate, vegetation and soil maps, according to their loadings on axis 1 or axis 2 of the SDFA, did not provide clear-cut results. Clusters of similar loadings could be recognized within some, but not other, climate, vegetation and soil types. However, MS-GDM demonstrated that the effect of environmental variables (especially air temperature) on flea compositional turnover was much stronger than that of host turnover, indicating the predominance of niche-based processes in local community assembly. A comparison of our results with those on the mechanisms that drive species assembly in regional communities allows us to conclude that local and regional communities result from the joint action of niche-based and dispersal-based processes, with the former more important at a smaller spatial scale and the latter at a larger spatial scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.