Abstract

Species diversity of the Bifidobacterium genus was scarcely explored in different rearing systems of poultry. The aim of the study was to isolate intestinal species and compare their physiological and traits for adaptation to the avian intestinal niche. Fourteen strains isolated from chickens of intensive rearing farms and free-range hens, were identified by 16S rDNA sequencing, rep-PCR fingerprinting, and carbohydrates fermentation. Strains belonged to species Bifidobacterium pseudolongum subsp. pseudolongum and subsp. globosum, B. pullorum, B. animalis subsp lactis, B. boum, B. thermacidophilum subsp. thermacidophilum and B. thermophilum. One strain of B. animalis and B.pullorum, and two of B. pseudolongum subsp. pseudolongum were obtained from chicks, while the others were from free-range adult hens. Growth (in MRSc) at the poultry physiological temperature, acids production in caecal water with raffinose (rCW), ex vivo adhesion (%) to avian intestinal epithelial cells (IEC), and auto-aggregation (%) were used for discrimination inter- and intra-specific. Significantly different acetic and lactic acids production and growth temperatures were observed in strains of the same species/subspecies. Remarkable auto-aggregation capability was observed in B. thermacidophilum subsp. thermacidophilum LET 406 (40.2± 1.1%), while adhesion property was highlighted in B. pseudolongum subsp. pseudolongum LET 408 (65.30± 4.75% in jejunum; 46.05± 2.80 in ileum). Scanning Electronic Microscopy of the interaction IEC-LET 408 revealed an irregular bacterial surface exhibiting vesicle-like arrangements and filaments that formed a network among bacteria cells and with the epithelial cells, as possible adaptative response to promote its persistence in the gut. These finds will be valuable for bacterial supplements design intended to intensive rearing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call