Abstract

The recent observed manipulatable redox potential of trivalent americium ion in the aqueous phase by modifying an electrode offers an alternative to accomplish the separation. In order to understand extensively the speciation of Am, which is the prerequisite to understanding the mechanism of the oxidation of Am, we conducted a density functional study to identify the potential species of Am in its tri-, tetra-, and pentavalent states in aqueous phase. Based on the speciation analysis, the calculations implicate a stepwise mechanism for the oxidation of hydrated Am(III), which predominantly exists in its hydrated monatomic cationic form (Am3+(aq)). The two sequential one-electron oxidation processes first produce AmO2+(aq), which may establish an equilibrium with Am4+(aq), and the AmO2+(aq) may then evolve to the dioxo americyl(V) ion. These results suggest the copresence of Am4+(aq) and AmO2+(aq), which builds a bridge for the conversion of americium ion from a monatomic ion to dioxo americyl(V).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.