Abstract

Different kinds of species interactions can lead to different structures within ecological networks. Antagonistic interactions (such as between herbivores and host plants) often promote increasing host specificity within a compartmentalized network structure, whereas mutualistic networks (such as pollination networks) are associated with higher levels of generalization and form nested network structures. However, we recently showed that the host specificity of flower-visiting beetles from three different feeding guilds (herbivores, fungivores, and predators) in an Australian rainforest canopy was equal to that of herbivores on leaves, suggesting that antagonistic herbivores on leaves are no more specialized than flower-visitors. We therefore set out to test whether similarities in the host specificity of these different assemblages reflect similarities in underlying network structures. As shown before at the species level, mutualistic communities on flowers showed levels of specialization at the network scale similar to those of the antagonistic herbivore community on leaves. However, the network structure differed, with flower-visiting assemblages displaying a significantly more nested structure than folivores, and folivores displaying a significantly more compartmentalized structure than flower-visitors. These results, which need further testing in other forest systems, demonstrate that both antagonistic and mutualistic interactions can result in equally high levels of host specialization among beetle assemblages in tropical rainforests. If this is a widespread phenomenon, it may alter our current perceptions of food web dynamics, species diversity patterns, and co-evolution in tropical rainforests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.