Abstract

Abstract The spatiotemporal structure of Pacific pan-decadal variability (PDV) is isolated in global long-term surface temperature (ST) datasets and reanalysis atmospheric parameter fields from which El Niño–Southern Oscillation (ENSO) effects have been removed. Empirical orthogonal function (EOF) and combined EOF analysis of the resulting time series identify PDV as one of two primary modes of long-term variability, the other being a global warming (GW) trend, which is addressed in a companion paper (Part I). In this study, it is shown that one of several PDV interdecadal regime shifts occurred during the 1990s. This significant change in the Pacific basin is comparable but antiphase to the well-known 1976 climate regime shift and is consistent with the observed changes in biosystems and ocean circulation. A comprehensive picture of PDV as manifested in the troposphere and at the surface is described. In general, the PDV spatial patterns in different parameter fields share some similarities with the patterns associated with ENSO, but important differences exist. First, the PDV circulation pattern is shifted westward by about 20° and is less zonally extended than that for ENSO. The westward shift of the PDV wave train produces a different North American teleconnection pattern that is more west–east oriented. The lack of a strong PDV surface temperature (ST) signal in the west equatorial Pacific and the relatively strong ST signal in the subtropical regions are consistent with an atmospheric overturning circulation response that differs from the one associated with ENSO. The analysis also suggests that PDV is a combination of decadal and/or interdecadal oscillations interacting through teleconnections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.