Abstract

Viewers can rapidly extract a holistic semantic representation of a real-world scene within a single eye fixation, an ability called recognizing the gist of a scene, and operationally defined here as recognizing an image's basic-level scene category. However, it is unknown how scene gist recognition unfolds over both time and space-within a fixation and across the visual field. Thus, in 3 experiments, the current study investigated the spatiotemporal dynamics of basic-level scene categorization from central vision to peripheral vision over the time course of the critical first fixation on a novel scene. The method used a window/scotoma paradigm in which images were briefly presented and processing times were varied using visual masking. The results of Experiments 1 and 2 showed that during the first 100 ms of processing, there was an advantage for processing the scene category from central vision, with the relative contributions of peripheral vision increasing thereafter. Experiment 3 tested whether this pattern could be explained by spatiotemporal changes in selective attention. The results showed that manipulating the probability of information being presented centrally or peripherally selectively maintained or eliminated the early central vision advantage. Across the 3 experiments, the results are consistent with a zoom-out hypothesis, in which, during the first fixation on a scene, gist extraction extends from central vision to peripheral vision as covert attention expands outward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call