Abstract

The climate effect and environmental pollution caused by dust discharged into the atmosphere have attracted much attention. However, the driving factors of dust emissions have not been studied thoroughly. Here, spatiotemporal variations in dust emissions and the relationship between dust emissions and large-scale atmospheric circulation in East Asia from 2000 to 2021 were investigated using Modern-Era Retrospective Analysis for Research and Applications version 2, Cloud-Aerosol Lidar Pathfinder Satellite Observations, ERA5 reanalysis data, and climate indices. Results showed that the Taklimakan Desert in the Tarim Basin, the Gurbantonggut Desert in the Junggar Basin, the Turpan Basin, and the Gobi Desert in western Inner Mongolia and southern Mongolia are the main sources of dust emissions in East Asia. The period of strong dust emissions is from March to May, and emissions to the atmosphere were mainly distributed at 0–4 km in the troposphere. In the eastern and southwestern Tarim Basin, northern Junggar Basin, and parts of the Gobi Desert in southern Mongolia, dust emissions have significantly increased over the past 22 years, whereas in the southwestern Tibetan Plateau, southwestern Inner Mongolia, and a small part of the northern Mongolian Gobi Desert there was a significant decreasing trend. The winter North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) were significantly negatively correlated with East Asian dust emissions the following spring. The various phases of the AO/NAO coupling have clear different effects on East Asian dust emissions in the spring. When the AO/NAO coupling was negative (positive), the East Asian trough and Siberian High were strengthened (weakened), the frequency of cold air activity increased (weakened), 800 hPa wind speed strengthened (weakened), and East Asian emissions increased (decreased). In AO−/NAO+ years, the Asian polar vortex was stronger to the south and the East Asian trough was stronger to the west. The Lake Baikal trough was in the deepening phase, which caused more polar cold air to move into East Asia, aggravating the intensity of dust activity. In the AO+/NAO− years, the Siberian High and East Asian trough weakened, which was unfavorable to the southward movement of cold air from Siberia. Therefore, the frequency of windy weather in East Asia decreased, partly weakening dust emissions. However, a positive geopotential anomaly in northeast China and a negative geopotential anomaly in South Asia triggered an anomalous enhancement in easterly wind in the tropospheric area over northwest China. Strengthening of the Balkhash trough provides favorable conditions for gale weather in northwest China. The frequency of gale weather increased, and dust emissions were enhanced in northwest China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.