Abstract
BackgroundWetland loss is a global concern due to its enormous ecosystem services. Marshland, a typical natural wetland, which is concentrated in the Sanjiang Plain, has undergone dramatic loss in the last several decades. The spatiotemporal changes in marshland were studied based on Landsat images of the Sanjiang Plain from 1980 to 2016 with the land use maps in 1980, 1995, 2000, 2005, 2010, and 2016 using land use dynamic degree and landscape indices. The driving forces of marshland loss, including biophysical factors, socio-economic factors, and land management, were analyzed with boosted regression trees (BRTs) methods.ResultsThe area of marshland loss was 7372 km2, which accounted for 65.7% of the area of marshland in 1980; however, the paddy field area was expanded by 22,313 km2. The lost marshland was mainly converted to dry farmland (47.5%) and paddy field (47.2%) during 1980–2016. Both the landscape pattern of the study area and marshland became increasingly fragmented. The relatively important factors responsible for marshland loss were biophysical factors, socio-economic factors, and land management, which accounted for 65.2%, 25.5%, and 8.4%, respectively. The most important driving forces with high “relative influence” were “distance to river,” which accounted for 20.6% of the total variance explained. The “relative influence” of potential crop yield and ditch density reached 20.2% and 8.4%, respectively.ConclusionSignificant land use changes have occurred in the Sanjiang Plain over the past 37 years, with characteristics of rapid paddy field expansion and drastic marshland loss. Meanwhile, marshland fragmentation continued to increase. Reclamation was the main reason for the large-scale marshland loss. Biophysical factors influenced the decisions regarding the locations of marshland loss. Moreover, climate factors (i.e., average annual precipitation and average annual temperature) also played an important role in marshland loss. These results can provide helpful knowledge for understanding the patterns and reasons for marshland loss and protecting and managing strategies for wetlands restoration.
Highlights
Wetlands play an irreplaceable role in hydrologic regulation, carbon storage, water purification, and biodiversity conservation (Bullock and Acreman 2003; Costanza et al 2014)
Land use change of the Sanjiang Plain Classification accuracy was assessed with 216 field survey points in 2016, and historical land use information was collected from local elderly residents
The results showed that where the potential crop yield continued to increase, marshland loss was predicted to occur at high intensity
Summary
Wetlands play an irreplaceable role in hydrologic regulation, carbon storage, water purification, and biodiversity conservation (Bullock and Acreman 2003; Costanza et al 2014). Wetlands continue to shrink as the increasing demands for land and climate change, in Asia and at mid-high latitudes zone (Davidson 2014; Dixon et al 2016). The driving forces of marshland loss, including biophysical factors, socio-economic factors, and land management, were analyzed with boosted regression trees (BRTs) methods. The lost marshland was mainly converted to dry farmland (47.5%) and paddy field (47.2%) during 1980–2016. Both the landscape pattern of the study area and marshland became increasingly fragmented. The relatively important factors responsible for marshland loss were biophysical factors, socio-economic factors, and land management, which accounted for 65.2%, 25.5%, and 8.4%, respectively. The “relative influence” of potential crop yield and ditch density reached 20.2% and 8.4%, respectively
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.