Abstract
We applied the Bubbles technique to reveal directly the spatio-temporal features of uppercase Arial letter identification. We asked four normal readers to each identify 26,000 letters that were randomly sampled in space and time; afterwards, we performed multiple linear regressions on the participant's response accuracy and the space–time samples. We contend that each cluster of connected significant regression coefficients is a letter feature. To bridge the gap between the letter identification literature and this experiment, we also determined the relative importance of the features proposed in the letter identification literature. Results show clear modulations of the relative importance of the letter features of some letters across time, demonstrating that letter features are not always extracted simultaneously at constant speeds. Furthermore, of all the feature classes proposed in the literature, line terminations and horizontals appear to be the two most important for letter identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.