Abstract

Liquid state structure has traditionally been characterized with the radial distribution functions between atoms. Although these functions are routinely available from x-ray diffraction and neutron scattering experiments or from computer simulations, they cannot be interpreted unambiguously to provide the spatial order in a molecular liquid. A direct approach to determining the spatial structure in the liquid state is demonstrated here. Three-dimensional maps representing the local atomic densities are presented for several water models. These spatial maps provide a picture of the short-range order in liquid water which reveals specific details of its local structure that are important in the understanding of its properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.