Abstract

The analysis of damage in cities after an earthquake to implement mitigation strategies of seismic risk is a complex job that is usually full of uncertainties. Numerous variables affect the final result of the observable damage in a set of buildings in an urban area. The use of methodologies capable of providing global explanations beyond the traditional unidisciplinary approach of disciplines, such as structural analysis, earthquake engineering, geotechnics, or seismology, can be very useful for improving the behavior of our cities against earthquakes. This article presents geostatistical post-earthquake analysis, an innovative approach in this field of research based on GIS spatial statistical tools to evaluate the importance of the different variables after an earthquake that may have caused damage in a city. This new framework will be applied to analyze, from a geostatistical perspective, the damage levels observed in the city of Lorca (Spain) after the earthquake of 2011; a case study where various studies have proposed different measures to mitigate the impact of future earthquakes as a consequence of focusing on different phenomena as the main variable for the damage produced. A bivariate GIS assessment will allow spatial correlation of the problems detected from a statistical point of view (inadequate design of buildings, age of the real estate stock, inefficient urban planning configurations, geological risk, etc.) and the different levels of damage that the technicians who participated in the post-earthquake phase evaluated in the city. The results obtained will allow one to hierarchize the importance of the different detected phenomena to prepare the city better against future earthquakes and to elaborate an improved seismic mitigation strategy.

Highlights

  • The necessary forensic analysis after an earthquake to implement seismic mitigation strategies in cities is quite complex

  • On many occasions we find that the studies carried out on the effects of an earthquake in a city offer partial views on the measures to be adopted, since all of them tend to focus the problem within the exclusive scope of their scientific discipline

  • The local urban regulations should discourage these types of elements, which are widely used in this area of Spain because they enable areas such as garages or mezzanines to be illuminated

Read more

Summary

Introduction

The necessary forensic analysis after an earthquake to implement seismic mitigation strategies in cities is quite complex. There are many variables and uncertainties that center around the evaluation process (number of victims, location and amount of damage, characteristics of the seismological phenomenon, presence of attenuating or amplifying local factors, influence of urban and building design, etc.) [1]. These variables tend to belong to different fields of knowledge, such as structural dynamics [2], earthquake engineering [3], geotechnics and geology [4], seismology [5], or even the urban configuration of cities [6].

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call