Abstract

The mechanical and physical properties of lignocellulosic materials are closely related to the orientation and interaction of the polymers within cell walls. In this work, Imaging Polarized FTIR, combined with directional chemical removal, was applied to characterize the spatial orientation and interaction of cell wall polymers in bamboo fibers and parenchyma cells from two bamboo species. The results demonstrate the cellulose in bamboo fibers is nearly axially oriented whereas it is almost transversely arranged in parenchyma cells. Xylan and lignin are both preferentially oriented alongside cellulose, but with less orientation degree in the parenchyma cells. After lignin removal, the average orientation of xylan and cellulose is little affected, suggesting a strong interaction between cellulose and xylan. However, the alkaline treatment significantly weakens the orientation of lignin in both fibers and parenchyma cells, and more significant for the latter, indicating the easy-degradable nature of lignin in parenchyma cells. Additionally, it seemed the lignin and xylan in fibers were more difficult to remove as compared to parenchyma cells, supporting the assumption that stronger interaction exists between lignin and xylan in the fibers. In a word, it is believed parenchyma cells are more suitable for biorefinery owing to their less ordered and relatively loose molecular assembly, as compared to fibers.Graphical abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.