Abstract
Single point turbulence statistics measured directly above and in close proximity to the wall in a fully developed, fully rough, turbulent open channel flow are reported. In order to investigate the spatial inhomogeneity of the turbulence, the measurements were obtained over a matrix of measurement points in a plane parallel to the roughness-bed surface. The measurements were obtained with a three-component laser Doppler velocimeter (3D-LDV) system. The turbulence statistics associated with the vertical velocity component, including conditioned mean vertical velocities, rms distributions, and mean vertical momentum fluxes are emphasized. For the Reynolds and Froude numbers associated with this investigation, and with the specific roughness geometry employed in this study (a packed bed of uniform-diameter spheres), it is found that the distribution of the local mean vertical velocity, , has non-zero contributions over the roughness pattern and that this contributes to a mean net vertical momentum flux into the roughness bed. However, the net vertical momentum flux due to turbulent fluctuations is positive out of the bed, consistent with smooth-wall behavior. These results are relevant to the study of sediment entrainment and suspension/deposition as well as the exchange and transport of chemical species between the channel core flow and the fluid within the roughness bed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.