Abstract

The spatial filtering method for particle velocity measurement has the advantages of simplicity of the measurement system and convenience of data processing. In this paper, the relationship between solid particles mean velocity in a pneumatic pipeline and the power spectrum of the output signal of an electrostatic sensor was mathematically modeled. The effects of the length of the sensor, the thickness of the dielectric pipe and its length on the spatial filtering characteristics of the sensor were also investigated using the finite element method. As for the roughness of and the difficult determination of the peak frequency fmax of the power spectrum characteristics of the output signal of the sensor, a wavelet analysis based filtering method was applied to smooth the curve, which can accurately determine the peak frequency fmax. Finally, experiments were performed on a pilot dense phase pneumatic conveying rig at high pressure to test the performance of the velocity measurement system. The experimental results show that the system repeatability is within ±4% over a gas superficial velocity range of 8.63–18.62 m s−1 for a particle concentration range of 0.067–0.130 m3 m−3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.