Abstract
We calculate the thickness of the surface scattering layer, defined as the region where electron inelastic scattering is affected by the surface, using the semi‐classical treatment of electron energy loss provided by the Chen–Kwei theory. To this end, we consider the depth‐dependent, surface‐related contributions to the inverse inelastic mean free path, namely, the excitation of surface plasmons and the reduction in bulk plasmon excitation (Begrenzung effect). We find that surface effects extend further after electrons cross the surface than before they cross it. The ‘pre‐surface thickness’ is given by the ratio of the electron velocity to the plasma frequency, the characteristic decay length for surface effects. All thickness estimates increase linearly with the electron velocity and decrease as (cosα)x with the angle α between the electron trajectory and the surface normal. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.