Abstract

The industrial complex Neot Hovav, in Israel, is situated above an anaerobic fractured chalk aquitard, which is polluted by a wide variety of hazardous organic compounds. These include volatile and non-volatile, halogenated, organic compounds. In this study, we characterized the indigenous bacterial population in 17 boreholes of the groundwater environment, while observing the spatial variations in the population and structure as a function of distance from the polluting source. In addition, the de-halogenating potential of the microbial groundwater population was tested through a series of lab microcosm experiments, thus exemplifying the potential and limitations for bioremediation of the site. In all samples, the dominant phylum was Proteobacteria. In the production plant area, the non-obligatory organo-halide respiring bacteria (OHRB) Firmicutes Phylum was also detected in the polluted water, in abundancies of up to 16 %. Non-metric multidimensional scaling (NMDS) analysis of the microbial community structure in the groundwater exhibited clusters of distinct populations following the location in the industrial complex and distance from the polluting source. Dehalogenation of halogenated ethylene was demonstrated in contrast to the persistence of brominated alcohols. Persistence is likely due to the chemical characteristics of brominated alcohols, and not because of the absence of active de-halogenating bacteria.

Highlights

  • Groundwater contamination, by persistent, bioaccumulative and bioactive compounds due to intensive industrialization is a critical environmental issue [1,2,3]

  • In 2015, 17 boreholes were sampled for microbial biodiversity and dissolved organic carbon (DOC), with a spatial distribution from the production plant [20], and up to 3.5 km downstream of the industrial area

  • This study exhibits the importance of combining multiple techniques when addressing the natural bioremediation potential of a microbial community

Read more

Summary

Introduction

Groundwater contamination, by persistent, bioaccumulative and bioactive compounds due to intensive industrialization is a critical environmental issue [1,2,3]. In addition to pollution from industry, agriculture, and the energy sector, personal care products, and pharmaceutical residues are emerging organic contaminants (EOC) in groundwater [6]. One of the largest groups of chemicals that cause environmental contamination are halogenated organic compounds [8]. Due to their high common resistance to degradation, they often accumulate in the environment, and their fate depends highly upon microbial degradation [6,7,8,9,10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.