Abstract

Characterization and quantitation of the spatial distribution of pathological abnormalities along the length of nerves may be helpful in understanding the underlying mechanisms of diabetic polyneuropathy. To this end, by examining transverse sections of nerve roots and proximal-to-distal levels of lower limb nerves in 9 controls and 15 diabetic patients with polyneuropathy, we have determined the myelinated fiber (MF) number, size distribution, median diameter, and variability of density (MFs/mm2) among frames and among fascicles. Even in cases with mild polyneuropathy, fiber loss, a decrease in the median diameter, and an increase in the variability of density among frames and among fascicles began in proximal nerve and extended to distal levels. Multifocal fiber loss along the length of nerves and sprouting provide the best explanation for these findings. The pattern is dissimilar from that observed in diffuse metabolic disease of Schwann cells, neuronal degeneration, and dying-back neuropathy, but like that found in experimental ischemic neuropathy induced by embolization of nerve capillaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.