Abstract

The spatial distribution features of electric field over three Alpha transmitters in Russia were analyzed based on the Demeter satellite records at local nighttime during the solar minimum in December of 2008, where the three transmitters are with the same emitted power of 500 kW and the same radio waves at 11.9 kHz, 12.6 kHz, and 14.9 kHz. The results of observations showed that the maximal electric field reached −80 to −70 dB (hereafter referred as to V/m) at 660 km altitude, and the horizontal covered area even exceeded 80° in longitude with electric field above −100 dB at 14.9 kHz. The lowest electric field and the smallest longitude scale were detected over Krasnodar (KRA), which is demonstrated that the lower ionosphere plays an important role in attenuating the energy as suggested by the simulation results from the full-wave propagation model. Another feature over KRA was the significant decrease in electromagnetic field strength at 11.9 kHz and 12.6 kHz, being one order of magnitude lower than the other two transmitters, where the lower hybrid resonance waves affected severely the whistler mode wave mode propagation. Compared with the ground very low frequency observations at Tonghai and Ya'an in China, the most complex variations were observed from KRA, while the east transmitter Khabarovsk maintained high strength of electromagnetic power in a longer distance than the middle transmitter Novosibirsk in local nighttime, which is consistent with the large covering scale in the topside ionosphere due to the enhancement by wave-particle interaction from the other transmitter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.