Abstract

Considering the comparative perspective of the net agricultural carbon effect in China’s three major functional grain production areas, the Dagum Gini coefficient, kernel density estimation and Markov chain analysis are used to investigate the spatial disequilibrium and dynamic evolution characteristics of the net agricultural carbon effect in China from 2000 to 2019. The results show that the overall net agricultural carbon sink in China is on a fluctuating upward trend, and the net agricultural carbon sink in the main production areas is higher than that in main marketing areas and balanced production and marketing areas. There are obvious differences in the net agricultural carbon sink between different areas, and the differences are expanding; inter-regional differences are the most significant, with the contribution of intra-regional differences second and the contribution of intensity of transvariation the least. The kernel density curve shows that the absolute differences are increasing and that there are gradients and multipolar differentiation within the area. The Markov transfer matrix reflects that the net agricultural carbon effect in China is highly volatile and has a strong internal mobility. The probability of upward shift in an area increases when it is adjacent to a high-level area, and the net carbon effect of agriculture in high-level areas has a strong stability. Based on this, each area should build on its own comparative advantages and explore targeted pathways to reducing emissions and increasing sinks in agriculture while strengthening inter-regional communication and cooperation. It is necessary to build a synergistic mechanism to enhance the net carbon effect of agriculture, which will ultimately help to achieve the “double carbon” target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call