Abstract

The space-time symmetry group of a model of a relativistic spin 1/2 elementary particle, which satisfies Dirac's equation when quantized, is analyzed. It is shown that this group, larger than the Poincare group, also contains space-time dilations and local rotations. It has two Casimir operators, one is the spin and the other is the spin projection on the body frame. Its similarities with the standard model are discussed. If we consider this last spin observable as describing isospin, then, this Dirac particle represents a massive system of spin 1/2 and isospin 1/2. There are two possible irreducible representations of this kind of particles, a colourless or a coloured one, where the colour observable is also another spin contribution related to the zitterbewegung. It is the spin, with its twofold structure, the only intrinsic property of this Dirac elementary particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.