Abstract
We give a set of local geometric conditions on a spacetime metric which are necessary and sufficient for it to be a null electrovacuum, that is, the metric is part of a solution to the Einstein–Maxwell equations with a null electromagnetic field. These conditions are restrictions on a null congruence canonically constructed from the spacetime metric, and can involve up to five derivatives of the metric. The null electrovacuum conditions are counterparts of the Rainich conditions, which geometrically characterize non-null electrovacua. Given a spacetime satisfying the conditions for a null electrovacuum, a straightforward procedure builds the null electromagnetic field from the metric. Null electrovacuum geometry is illustrated using some pure radiation spacetimes taken from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.