Abstract

Let (M, g) be a space-time with Lorentzian distance functiond. If (M, g) is distinguishing andd is continuous, then (M, g) is shown to be causally continuous. Furthermore, a strongly causal space-time (M, g) is globally hyperbolic iff the Lorentzian distance is always finite valued for all metricsg′ conformal tog. Lorentzian distance may be used to define cut points for space-times and the analogs of a number of results holding for Riemannian cut loci may be established for space-time cut loci. For instance in a globally hyperbolic space-time, any timelike (or respectively, null) cut pointq of p along the geodesicc must be either the first conjugate point ofp or else there must be at least two maximal timelike (respectively, null) geodesics fromp toq. Ifq is a closest cut point ofp in a globally hyperbolic space-time, then eitherq is conjugate top or elseq is a null cut point. In globally hyperbolic space-times, no point has a farthest nonspacelike cut point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.