Abstract

SummaryAs it was established that aging is not associated with massive neuronal loss, as was believed in the mid‐20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging‐related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging‐related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging‐induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases.

Highlights

  • Aging is a physiological process that alters brain function, thereby resulting in behavioural changes, memory decline and cognitive impairments

  • Age-related loss of synaptic contacts, decreased neurotransmitter release and reduced postsynaptic responsiveness to neurotransmitters result in a decline in synaptic strength, contributing to age-related cognitive decline

  • Molecular aging, defined as age-related transcriptome changes, and biochemical protein-related alterations within synapses weaken the plastic potential of neurons

Read more

Summary

Summary

As it was established that aging is not associated with massive neuronal loss, as was believed in the mid-20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. This review focuses on the aging of GABAergic neurons and synapses. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging-related alterations in their presynaptic and postsynaptic components. We discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging-induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron’s ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases.

Introduction
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.