Abstract

Distance functions on the set of Keplerian orbits play an important role in solving problems of searching for parent bodies of meteoroid streams. A special kind of such functions are distances in the quotient spaces of orbits. Three metrics of this type were developed earlier. These metrics allow to disregard the longitude of ascending node or the argument of pericenter or both. Here we introduce one more quotient space, where two orbits are considered identical if they differ only in their longitudes of nodes and arguments of pericenters, but have the same sum of these elements (the longitude of pericenter). The function q is defined to calculate distance between two equivalence classes of orbits. The algorithm for calculation of ̺6 value is provided along with a reference to the corresponding program, written in C++ language. Unfortunately, ̺6 is not a full-fledged metric. We proved that it satisfies first two axioms of metric space, but not the third one: the triangle inequality does not hold, at least in the case of large eccentricities. However there are two important particular cases when the triangle axiom is satisfied: one of three orbits is circular, longitudes of pericenters of all three orbits coincide. Perhaps the inequality holds for all elliptic orbits, but this is a matter of future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call