Abstract

A 1-m-thick pillar was subject to coupled excavation- and thermal-induced stresses to induce brittle rock mass yielding. The yielding strength of the heterogeneous and fractured rock mass consisting of Äspö diorite was evaluated at eighteen discrete locations using data from the displacement, acoustic emission, and thermal monitoring systems. The average rock mass yielding strength was determined to be 0.59 of the uniaxial compressive strength. The onset of dilation in uniaxial laboratory tests, determined from strain gauge data, was found to occur at approximately 0.45 of the uniaxial compressive strength. It was shown that that the onset of acoustic emission events in situ also occurred when the tangential stress exceeded 0.43 of the uniaxial compressive strength. For sites with absence of in situ data it is recommended that this lower-bound value determined from laboratory data may be used for assessing the in situ rock mass yielding strength. Visual observation and displacement monitoring showed that extent of rock mass yielding is sensitive to small changes in the tangential stress magnitudes. It was determined using three-dimensional modelling that changes in the tangential stress magnitude of approximately 1 MPa was sufficient to cause yielding of the pillar to propagate in what appeared to be intact rock. Observations suggest that without this small stress change yielding of the rock mass would not occur. In other words, there appeared to be a well defined boundary, and if the stresses reached this boundary yielding was observed. However, if stresses were only slightly below this boundary yielding or time-dependant processes were not observed over the monitoring period used in the experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call