Abstract

H isotope measurements of carbonate, phosphate, feldspathic and mafic glasses, and post-stishovite silica phase in the shergottites Zagami, Shergotty, SaU 005, DaG 476, ALHA 77005 and EETA 79001, as well as in Chassigny and ALH 84001, show that all these phases contain deuterium-enriched water of extraterrestrial origin. The minerals and glasses analyzed may contain an initial primary hydrogen component, but their isotopic composition was modified to varying degrees by three different processes: interaction with a fractionated exchangeable water reservoir on Mars, hydrogen devolatilization by impact melting, and terrestrial contamination. Positive correlations between δD and water abundance in feldspathic glass and post-stishovite silica in Zagami, Shergotty, and SaU 005 is indicative of mixing of a high δD component (3000–4000‰) and a less abundant, low δD component (∼0‰). The high δD component is primarily derived from the Martian exchangable reservoir, but may also have been influenced by isotopic fractionation associated with shock-induced hydrogen loss. The low δD component is either a terrestrial contaminant or a primary “magmatic” component. The negative correlation between δD and water abundances in mafic and feldspathic glasses in ALH 84001, ALHA 77005, and EETA 79001 is consistent with the addition of a low δD terrestrial contaminant to a less abundant high-deuterium Martian component. The low δD of magmatic glass in melt inclusions suggests that the δD of Martian parent magma was low and that the initial H isotope signature of Mars may be similar to that of Earth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call