Abstract

AbstractPolicy makers need reliable future climate projection for adaptation purposes. A clear separation of sources of uncertainty also helps narrow the projection uncertainty. However, it remains unclear for monsoon precipitation projections. Here we quantified the contributions of internal variability, model uncertainty, and scenario uncertainty to the ensemble spread of global land monsoon precipitation projections using Coupled Model Intercomparison Project Phase 5 (CMIP5) models and single‐model initial‐condition large ensembles (SMILEs). For mean precipitation, model uncertainty (contributing ~90%) dominates the projection uncertainty, while the contribution of internal variability (scenario uncertainty) decreases (increases) with time. The source of uncertainty for extreme precipitation differs from that of mean precipitation mainly in long‐term projection, with the contribution of scenario uncertainty comparable to model uncertainty. Reducing model uncertainty can effectively narrow the monsoon precipitation projection. The internal variability estimates differ slightly among models and methods, the uncertainty partitioning is robust in middle‐long term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call