Abstract

In the source-filter theory, the mechanism of speech production is described as a two-stage process: (a) The air flow coming from the lungs induces tissue vibrations of the vocal folds (i.e., two small muscular folds located in the larynx) and generates the “source” sound. Turbulent airflows are also created at the glottis or at the vocal tract to generate noisy sound sources. (b) Spectral structures of these source sounds are shaped by the vocal tract “filter.” Through the filtering process, frequency components corresponding to the vocal tract resonances are amplified, while the other frequency components are diminished. The source sound mainly characterizes the vocal pitch (i.e., fundamental frequency), while the filter forms the timbre. The source-filter theory provides a very accurate description of normal speech production and has been applied successfully to speech analysis, synthesis, and processing. Separate control of the source (phonation) and the filter (articulation) is advantageous for acoustic communications, especially for human language, which requires expression of various phonemes realized by a flexible maneuver of the vocal tract configuration. Based on this idea, the articulatory phonetics focuses on the positions of the vocal organs to describe the produced speech sounds. The source-filter theory elucidates the mechanism of “resonance tuning,” that is, a specialized way of singing. To increase efficiency of the vocalization, soprano singers adjust the vocal tract filter to tune one of the resonances to the vocal pitch. Consequently, the main source sound is strongly amplified to produce a loud voice, which is well perceived in a large concert hall over the orchestra. It should be noted that the source–filter theory is based upon the assumption that the source and the filter are independent from each other. Under certain conditions, the source and the filter interact with each other. The source sound is influenced by the vocal tract geometry and by the acoustic feedback from the vocal tract. Such source–filter interaction induces various voice instabilities, for example, sudden pitch jump, subharmonics, resonance, quenching, and chaos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call