Abstract

Low-energy (2–19 keV) impulsive electron events observed in interplanetary space have been traced back to the Sun, using their interplanetary type III radiation and metric/decimetric radio-spectrograms. For the first time we are able to study the highest frequencies and thus the radio signatures closest to the source region. All the selected impulsive solar electron events have been found to be associated with an interplanetary type III burst. This allows to time the particle events at the 2 MHz plasma level and identify the associated coronal radio emissions. Except for 5 out of 27 cases, the electron events were found to be associated with a coronal type III burst in the metric wavelength range. The start frequency yields a lower limit to the density in the acceleration region. We also search for narrow-band spikes at the start of the type III bursts. In about half of the observed cases we find metric spikes or enhancements of type I bursts associated with the start of the electron event. If interpreted as the plasma emission of the acceleration process, the observed average frequency of spikes suggests a source density of the order of 3×108 cm−3 consistent with the energy cut-off observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.