Abstract

Early life microbial colonizers shape and support the immature vertebrate immune system. Microbial colonization relies on the vertical route via parental provisioning and the horizontal route via environmental contribution. Vertical transmission is mostly a maternal trait making it hard to determine the source of microbial colonization in order to gain insight into the establishment of the microbial community during crucial development stages. The evolution of unique male pregnancy in pipefishes and seahorses enables the disentanglement of both horizontal and vertical transmission, but also facilitates the differentiation of maternal versus paternal provisioning ranging from egg development, to male pregnancy and early juvenile development. Using 16S rRNA amplicon sequencing and source-tracker analyses, we revealed how the distinct origins of transmission (maternal, paternal and horizontal) shaped the juvenile internal and external microbiome establishment in the broad-nosed pipefish Syngnathus typhle. Our data suggest that transovarial maternal microbial contribution influences the establishment of the juvenile gut microbiome whereas paternal provisioning mainly shapes the juvenile external microbiome. The identification of juvenile key microbes reveals crucial temporal shifts in microbial development and enhances our understanding of microbial transmission routes, colonization dynamics and their impact on lifestyle evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call