Abstract

Abstract Major flares and coronal mass ejections (CMEs) tend to originate from compact polarity inversion lines (PILs) in solar active regions (ARs). Recently, a scenario named “collisional shearing” was proposed by Chintzoglou et al. to explain the phenomenon, which suggests that the collision between different emerging bipoles is able to form a compact PIL, driving the shearing and flux cancellation that are responsible for the subsequent large activities. In this work, by tracking the evolution of 19 emerging ARs from their birth until they produce the first major flares or CMEs, we investigated the source PILs of the activities, i.e., the active PILs, to explore the generality of “collisional shearing.” We find that none of the active PILs is the self PIL (sPIL) of a single bipole. We further find that 11 eruptions originate from the collisional PILs (cPILs) formed due to the collision between different bipoles, six from the conjoined systems of sPIL and cPIL, and two from the conjoined systems of sPIL and ePIL (external PIL between the AR and the nearby pre-existing polarities). Collision accompanied by shearing and flux cancellation is found to develop at all PILs prior to the eruptions, with 84% (16/19) cases having collisional length longer than 18 Mm. Moreover, we find that the magnitude of the flares is positively correlated with the collisional length of the active PILs, indicating that the more intense activities tend to originate from PILs with more severe collisions. The results suggest that “collisional shearing,” i.e., bipole–bipole interaction during the flux emergence, is a common process in driving the major activities in emerging ARs.

Highlights

  • Solar flares and coronal mass ejections (CMEs) are among the most violent activities in the solar atmosphere

  • For an active regions (ARs), except the self PIL (sPIL) and collisional PILs (cPILs), there may be another type of polarity inversion lines (PILs) formed between the AR and the nearby preexisting polarities, defined as the external PIL

  • We find that the active PILs in our sample could be classified into three types: cPIL, of which the PILs are complete collisional PILs; the conjoined sPIL/cPIL, in which the PILs are the combination of the self PILs and collisional PILs; the conjoined sPIL/ePIL, in which the PILs are the integral systems of the self PILs and external PILs

Read more

Summary

INTRODUCTION

Solar flares and coronal mass ejections (CMEs) are among the most violent activities in the solar atmosphere. Liu et al (2019) reported that during the early emergence phase of NOAA AR 12673, a magnetic flux rope above the AR’s central PIL was formed through flux cancellation and shearing during the “collisional shearing” They further suggested that the subsequent recurrent eruptions and flux ropes reformation were driven by the same process. Both works indicate that the “collisional shearing” may be important in driving large solar activities in emerging ARs. no statistical study on this phenomenon has been done according to our best knowledge.

OBSERVATION AND DATA ANALYSIS
RESULTS
Examples of cPILs
Correlation between the intensity of the activities and LcP IL and S
DISCUSSION AND CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call