Abstract

For the pollution assessment and quantitative source apportionment of heavy metals in surface dust, a total of 52 surface dust samples were collected from bus stops in Tianshui City. The geoaccumulation index (Igeo) and potential ecological risk index (RI) were used to analyze the pollution levels caused by heavy metals. The Positive Matrix Factorization (PMF) of the receptor modeling and geo-statistics were employed to analyze the source of the heavy metals. The results were as follows. ① Except for Mn, Co and V, the mean concentrations of other heavy metals have exceeded the local background value of Gansu. The percentage of excessive concentrations of Cu, Zn, Sr, Ba and Pb in the samples was 100%, and that of Cr, Ni and As were 96.15%, 94.23%, and 96.15%, respectively. ② Semivariogram model fitting showed that the block-based coefficients of Cu, Zn, Sr, Ba, Pb, Cr, Ni, and As were between 0.25 and 0.75, indicating that they were mainly affected by human factors. The high values of Pb, Zn, Ni and As were mainly distributed in the eastern part of the study area, and the high values of Cu, Sr, Ba and Cr were distributed in a spot-like pattern in the study area. ③ The Igeo results showed that As, Cu, Zn, and Pb were the main contamination factors, and the optimized RI showed that the heavy metals were the overall ecological risk of intensity, among which Pb, As and Cu were the main ecological factors and should be taken as the priority control objects. ④ Based on the PMF, there are four main sources of eleven heavy metals. V, Mn, and Co were attributed to natural sources, accounting for 18.33%; Cu, Sr, and Ba were from mixed sources of pollution from transportation and industrial alloy manufacturing, accounting for 26.99%; Cr and Ni were from sources of construction waste pollution, accounting for 17.17%, As, Zn and Pb were mainly produced by coal-traffic mixed pollution emissions, accounting for 37.52%. Overall, the study area was dominated by coal-traffic emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call