Abstract

IntroductionEvaluation of bradykinesia is based on five motor tasks from the MDS-UPDRS. Visually scoring these motor tasks is subjective, resulting in significant interrater variability. Recent observations suggest that it may be easier to hear the characteristic features of bradykinesia, such as the decrement in sound intensity or force of repetitive movements. The objective is to evaluate whether audio signals derived during four MDS-UPDRS tasks can be used to detect and grade bradykinesia, using two machine learning models. Methods54 patients with Parkinson's disease and 28 healthy controls were filmed while executing the bradykinesia motor tasks. Several features were extracted from the audio signal, including number of taps, speed, sound intensity, decrement and freezes. For each motor task, two supervised machine learning models were trained, Logistic Regression (LR) and Support Vector Machine (SVM). ResultsBoth classifiers were able to separate patients from controls reasonably well for the leg agility task, area under the receiver operating characteristic curve (AUC): 0.92 (95%CI: 0.78–0.99) for LR and 0.93 (0.81–1.00) for SVM. Also, models were able to differentiate less severe bradykinesia from severe bradykinesia, particularly for the pronation-supination motor task, with AUC: 0.90 (0.62–1.00) for LR and 0.82 (0.45–0.97) for SVM. ConclusionThis audio-based approach discriminates PD from healthy controls with moderate-high accuracy and separated individuals with less severe bradykinesia from those with severe bradykinesia. Sound analysis may contribute to the identification and monitoring of bradykinesia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.