Abstract

Through the processes of natural selection and genetic drift, allopatric populations diverge genetically and may ultimately become reproductively incompatible. In cases of prezygotic reproductive isolation, candidate systems for speciation genes logically include genes involved in mate or gamete recognition. However, where only postzygotic isolation exists, candidate speciation genes could include any genes that affect hybrid performance. We hypothesize that because mitochondrial genes frequently evolve more rapidly than the nuclear genes with which they interact, interpopulation hybridization might be particularly disruptive to mitochondrial function. Understanding the potential impact of intergenomic (nuclear and mitochondrial) coadaptation on the evolution of allopatric populations of the intertidal copepod Tigriopus californicus has required a broadly integrative research program; here we present the results of experiments spanning the spectrum of biological organization in order to demonstrate the consequences of molecular evolution on physiological performance and organismal fitness. We suggest that disruption of mitochondrial function, known to result in a diverse set of human diseases, may frequently underlie reduced fitness in interpopulation and interspecies hybrids in animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.