Abstract

A microscopic description of Hawking radiation in sonic black holes has been recently presented (Giovanazzi S 2005 Phys. Rev. Lett.94 061302). This exactly solvable model is formulated in terms of one-dimensional scattering of a Fermi gas. In this paper, the model is extended to account possible finite size effects of a realistic geometry. The flow of particles is maintained by a piston (i.e. an impenetrable barrier) moving slowly towards the sonic horizon. Using existing technologies the Hawking temperature can be of the order of a few microkelvin in a realistic experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.