Abstract

Studies of avian chimeras made by transplanting groups of quail somites into chick embryos have consistently shown that the muscle cells of the hindlimb are derived from the adjacent somites, however, the pattern of cell distribution from individual somites to individual hindlimb muscles has not been characterized. I have mapped quail cell distribution in the chick hindlimb after single somite transplantation to determine if cells from an individual somite populate discrete limb muscle regions and if there is a spatial correspondence between a muscle's somitic level of origin and the known spinal cord position of its motoneuron pool. At stages 15–18 single chick somites or equivalent lengths of unsegmented somitic mesoderm adjacent to the prospective hindlimb region were replaced with the corresponding tissue from quail embryos. At stages 28–34, quail cell distribution was mapped within individual thigh muscles and shank muscle regions. A quail-specific antiserum and Feulgen staining were used to identify quail cells. Transplants from somite levels 26–33 each gave rise to consistent quail cell labeling in a unique subset of limb muscles. The anteroposterior positions of these subsets corresponded to that of the transplanted somitic tissue. For example, more anterior or anteromedial thigh muscles contained quail cells when more anterior somitic tissue had been transplanted. For the majority of thigh muscles studied and for shank muscle groups, there was also a clear correlation between somitic level of origin and motoneuron pool position. These data are compatible with the hypothesis that motoneurons and the muscle cells of their targets share axial position labels. The question of whether motoneurons from a specific spinal cord segment recognize and consequently innervate muscle cells derived from the same axial level during early axon outgrowth is addressed in the accompanying paper (C. Lance-Jones, 1988, Dev. Biol. 126, 408–419) . Quail cell distribution was also mapped in chick embryos in which quail somites or unsegmented mesoderm had been placed 2–3 somites away from their position of origin. In all cases donor somitic tissues contributed to muscles in accord with their host position. These results indicate that muscle cell precursors within the somites are not specified to migrate to a predetermined target region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.